

Solenoids for MuCOOL

J.R. Miller, S. Prestemon, Y.M. Eyssa MuTAC Meeting, BNL 15-16 June 2000

What do we need to know?

- Designers of other subsystems primarily want to know the envelope, mass, fields, forces, etc. associated with the magnets.
- The overall project manager wants to know the costs.
- The design parameter that is most useful for helping to sort out these issues is the winding-pack current density J_{vack} .
- It also helps to know the composition consistent with J_{pack} .

Bent solenoid with dipole

JRM, MuTAC Presentation, 15 June 2000 Slide 3

Alternating-Field Channel

Absorber region:

 $B_{max} \approx 16.6 \text{ T}$ $R_{inner} \approx 100 \text{ mm}$

Bucking coils:

 $B_{max} \approx 9.6 \text{ T}$ $R_{inner} \approx 230 \text{ mm}$

Target Solenoid, v-Factory

For the High-Field **Superconducting Coil:**

Steel

Shield

Target

Resistive Coil

 $B_{max}\approx 9\ T$ $R_{inner} \approx 500 \ mm$ $Q'''_{rad} \sim 0.4 \text{ mW/kg}$

JRM, MuTAC Presentation, 15 June 2000

Technologies for superconducting windings Muon Collaboration

- Impregnated windings
- Ventilated windings
 - Cryostable
 - Metastable
- Cable-in-conduit conductors (CICC)

Impregnated windings

- Maximum J_{pack}
- Extremely limited stability (based on avoidance of perturbations)
- Rapid discharge by spreading quench

Reinforcement

NHMFL 900 MHz NMR Spectrometer Magnet

- $B_{max} \approx 21 \text{ T}$
- $E_{stored} \approx 40 \text{ MJ}$
- $35 < J_{pack} < 145 \text{ A/mm}^2$

Ventilated windings (metastable)

- Moderate stability and heat removal
- Quantitative prediction difficult

 $EBT-P coils* \\ B_{max} \approx 7.5 \ T \\ J_{pack} \approx 100 \ A/mm^2 \\ E_{stored} \approx 1.5 \ MJ$

^{*} J.K. Ballou et al., Proc. 9th Eng. Prob. Fusion Research, p. 543, 1981

CICC windings

 $B_{max} \approx 16 \text{ T}$ $J_{pack} \approx 40 \text{ A/mm}^2$ $E_{stored} \approx 100 \text{ MJ}$

- High, predictable stability and heat removal
- Large conductors, applicable only to relatively large magnets

- The essential magnet technologies appropriate to solenoid magnet systems are well understood.
- Issues for v-factory solenoid design are not primarily feasibility issues.
- There are several issues important for reduction of cost and risk.
- Our approach both roots out these issues and helps prioritize them quantitatively.

Attainable winding-pack current density

$$J_{pack} = \frac{I_{op}}{A_{sc} + A_{Cu} + A_{struc} + A_{He} + A_{insul}}$$

Superconductor cross-section

Copper cross-section for protection

Calculated with RRR = 100, Cu/NbTi = 70/30, B = 5 T, & Δt_{delay} = 0.5 s

Structure cross-section

For solenoids,

$$A_{struc} \approx \frac{I_{op}B_{z,\max}R_{inner}}{E_{struc}\varepsilon_{hoop,allowed}} - \frac{E_{cond}A_{cond}}{E_{struc}}$$

where typically:

$$E_{struc} = 210 \text{ GPa},$$

$$E_{cond} \sim 40$$
 GPa, and

$$\varepsilon_{hoop,allowed} \sim 0.3\%$$

Helium and insulation cross-sections

Helium in the windings provides stability and heat extraction.

Typically,
$$0 < \frac{A_{He}}{A_{cond}} < 0.7$$

Insulation fractions typically vary with the size of conductor. For large conductors $f \sim 0.1$ but may approach 0.5 for small conductors.

$$A_{insul} = \frac{f(A_{cond} + A_{struc} + A_{He})}{(1 - f)}$$

Estimates of attainable fact current-densities and costs Muon Collaboration

		Alternating-F		
Parameter	Bent Solenoid Channel	High-Field, Adsorber Region	Bucking Solenoids	Target Solenoid, HFSC Coils
B_{max} [T]	3	16.6	9.6	9
T_{op} [K]	4.5	1.8	1.8	4.5
R _{inner} [mm]	150	100	230	500
Superconductor	NbTi	Nb₃Sn	NbTi	Nb₃Sn
I_{op}/I_{C}	0.7	0.7	0.7	0.7
$\Delta t_{ extit{delay}} \left[ext{s} ight]$	0.5	0.5	0.5	0.5
$ au_{discharge}$ [s]	1	5	5	5
$T_{hot\text{-}spot}$ [K]	150	150	150	150
A_{He}/A_{cond}	0	0.6 (0)	0.6 (0)	0.6
$A_{\it insul}/A_{\it pack}$	0.3	0.15	0.15	0.15
J _{pack} [A/mm ²]	200	48 (66)	65 (94)	51
System cost* [M\$]	0.5	1.8		3.9

^{*} Including magnet, cryostat, and power supply

Summary

- We understand the requirements for the various solenoid systems in the v-factory environment.
- With very few exceptions, these systems are clearly feasible with existing technologies.
- R&D will be very useful for properly defining both the costs and risks and reducing these to acceptable levels.